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Abstract. Anthropogenic emissions of methane (CH4) make up a considerable contribution towards the Earth’s radiative 15 

budget since pre-industrial times. This is because large amounts of methane are emitted from human activities and the global 16 

warming potential of methane is high. The majority of anthropogenic fossil methane emissions to the atmosphere originate 17 

from a large number of small (point) sources. Thus, detection and accurate, rapid quantification of such emissions is vital to 18 

enable the reduction of emissions to help mitigate future climate change. There exist a number of instruments on satellites 19 

that measure radiation at methane-absorbing wavelengths, which have sufficiently high spatial resolution that can be used for 20 

detecting highly spatially localised methane 'point sources' (areas on the order of km2). Searching for methane plumes in 21 
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methane sensitive satellite images using classical methods, such as thresholding and clustering, can be useful but are time-22 

consuming and often inaccurate. Here, we develop a deep neural network to identify and quantify methane point source 23 

emissions from hyperspectral imagery from the PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite with 24 

30-m spatial resolution. The moderately high spectral and spatial resolution as well as considerable global coverage and free 25 

access to data make PRISMA a good candidate for methane plume detection. The neural network was trained with simulated 26 

synthetic methane plumes generated with the Large Eddy Simulation extension of the Weather Research and Forecasting 27 

model (WRF-LES), which we embedded into PRISMA images. The deep neural network was successful at locating plumes 28 

with F1-score, precision and recall of 0.95, 0.96 and 0.92, respectively, and was able to quantify emission rates with a mean 29 

error of 24%. The neural network was furthermore able to locate several plumes in real-world images. We have thus 30 

demonstrated that our method can be effective in locating and quantifying methane point source emissions in near real time 31 

from 30-m resolution satellite data which can aid us in mitigating future climate change. 32 

1 Introduction  33 

Methane (CH4) is a powerful greenhouse gas with a warming potential which per unit mass emitted is 84 times larger than 34 

for carbon dioxide over a 20-year period (Stocker et al., 2013). Emissions of methane as a result of human activities have 35 

contributed one quarter of climate warming since preindustrial times (Etminan et al., 2016). A large proportion of 36 

anthropogenic methane from industrial sources originates from point sources such as coal mines and oil and gas production 37 

facilities (Saunois et al., 2020). Furthermore, these emissions are generally underestimated by inventory-based approaches 38 

(Alvarez et al., 2018; Karion et al., 2013; Zavala-Araiza et al., 2015). A large proportion of these anthropogenic emissions 39 

originates from a small number of strong point sources due to oil and gas production equipment malfunction (Brandt et al., 40 

2016; Duren et al., 2019; Zavala-Araiza et al., 2017). Consequently, much of the methane emitted from such sources could 41 

be reduced at no net cost (IEA, 2017; Ocko et al., 2021). Acting to reduce methane emissions in this sector can be one of the 42 

most cost-effective methods of mitigating against further climate change.  43 

 44 

Methane point sources from oil and gas production are typically small in extent and emissions difficult to quantify and variable 45 

in time (Allen et al., 2013; Frankenberg et al., 2016). The primary challenge faced when estimating methane emissions from 46 

point sources from satellite data comes from the relatively low spatial resolution (in the order of kilometres) of satellite 47 

imagery from dedicated sensors such as the Greenhouse Gases Observing SATellite (GOSAT) (Kuze et al., 2009) and the 48 

TROPOspheric Monitoring Instrument (TROPOMI) (Levelt et al., 2006). These sensors typically have high spectral 49 

resolution of methane absorption bands in the shortwave infrared (SWIR) range of the electromagnetic spectrum to provide 50 

accurate measurements with high precisions of around 10-20 parts per billion (ppb) (Lorente et al., 2021; Parker et al., 2020). 51 

SWIR bands can also be effectively utilised to detect and quantify point sources from lower spectral-resolution sensors (Jacob 52 

et al., 2016; Duren et al., 2019). Recent hyperspectral spaceborne imaging spectrometers contain hundreds of spectral 53 
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channels in the visible-shortwave-infrared range with spectral resolution typically around 10 nm and spatial resolutions of 54 

tens of m. Due to their spatial and spectral resolution, they have been identified as useful new tools for identifying and 55 

quantifying methane point source emissions. PRecursore IperSpettrale della Missione Applicativa (PRISMA), developed and 56 

operated by the Italian Space Agency (ISA) since 2019, is the first hyperspectral mission where the satellite imagery has been 57 

openly released to the scientific community. The satellite consists of a panchromatic camera and an advanced hyperspectral 58 

instrument that measures radiances in approximately 250 bands between 400 and 2500 nm. The instrument has a spatial 59 

resolution of 30 m, a swath of 30 km, and a 12-nm spectral resolution (Galeazzi et al., 2008). How to best extract information 60 

on the location and extent of methane plumes is not yet fully established. Successful detection of methane point sources from 61 

PRISMA using a matched-filter retrieval technique has been reported by Guanter et al. (2021), albeit with a strong dependence 62 

of detection accuracy on surface type. In particular, brightness and homogeneity of the satellite images were identified to 63 

significantly influence the accuracy of methane detection techniques. 64 

 65 

Current approaches for detecting methane point sources and quantifying emission rates are time-intensive, laborious, and 66 

prone to errors owing to the substantial human intervention required. They typically involve a spectral analysis to infer 67 

methane column mean mixing ratios (Thorpe et al., 2014) followed by a methane plume detection method (often based on 68 

thresholding and clustering) and finally the integrated mass enhancement (IME) method to estimate the emission (Varon et 69 

al., 2018). Previous efforts utilising spaceborne imaging spectrometers to quantify methane point source emission rates have 70 

proved successful, but often with large errors of source detection and emissions estimates. The IME method yielded errors 71 

between 5-12% using 50-m resolution Greenhouse Gas Satellite - Demonstrator (GHGSat-D) imagery (Varon et al., 2018). 72 

However, this uncertainty estimate does not include errors from unknown wind speed and direction, which are both highly 73 

uncertain, thus uncertainties are effectively much larger. The multi-band multi-pass (MBMP) method was successful in 74 

quantifying methane point source emissions from Sentinel-2 multispectral instrument (MSI) imagery with precision between 75 

30% and 90% (Varon et al., 2021). The primary limitation of this approach is surface interference (Cusworth et al., 2019) 76 

which leads to artefacts and false anomalies, which can be mistakenly attributed to emission plumes. This is a major 77 

disadvantage for multi and hyperspectral missions because the better the resolution (and the greater the number of channels), 78 

the better the discrimination between the surface and methane absorption. Thus, producing a model that minimises such errors 79 

and can automatically locate methane sources would make emission monitoring from space faster, more reliable, and more 80 

scalable, thus providing an invaluable tool to aid mitigation. A first effort has also been made to estimate emission rates from 81 

AVIRIS-NG data using a neural network and without utilising wind speed and direction data. These estimates were subject 82 

to an error of roughly 30% of the emission rates (Jongaramrungruang et al., 2019). It is apparent that the noise in the satellite 83 

data, the lack of accurate wind data, and the complex structures of methane plumes make it difficult to model emission rates 84 

accurately via traditional approaches. 85 

 86 
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In recent years, deep neural network methods have improved rapidly. LeNet (Lecun et al., 1989) was one of the earliest 87 

convolutional neural networks (CNNs) and was used successfully to identify handwritten digits. This work laid the 88 

foundations for using artificial intelligence to obtain meaningful information from image data (known as computer vision). 89 

Deep learning models entered the mainstream following considerable reductions in model training time through the utilisation 90 

of graphics processing units (GPUs) (Oh and Jung, 2004). Deep learning was then revolutionised for image classification 91 

with the introduction of AlexNet (Krizhevsky et al., 2012). CNNs have since been applied to self-driving cars (e.g., Nugraha 92 

and Su, 2017), discovering new drug treatments (e.g. Wallach et al., 2015), facial recognition (e.g. Matsugu et al., 2003), and 93 

many other applications. The ease with which deep neural networks can be trained and deployed has also improved 94 

considerably in recent years, partially due to the development of application programming interfaces (APIs) such as Keras 95 

(Chollet, 2015). This has been supplemented by the increasing ubiquity and decreasing costs of GPUs and cloud computing 96 

servers, which together have enabled deep learning models to be trained rapidly and at a relatively low cost. Currently, work 97 

utilising deep neural networks has already proven to be considerably more effective than classical methods to detect point 98 

source emissions of nitrogen dioxide (NO2) (Finch et al., 2021).  99 

 100 

More recently, a deep neural network has been used to quantify methane point source emissions using the airborne AVIRIS-101 

NG instrument (Jongaramrungruang et al., 2022). In this study, a CNN was trained on synthetic plumes inserted into real 102 

images to extract features present in plumes of varying intensities and with differing wind speeds to locate and quantify the 103 

emission rates of the point sources. Jongaramrungruang et al. (2022) estimated emission rates of plumes with a mean absolute 104 

error of 17% for emissions larger than 40 kg hr-1. The classification accuracy (determining whether a plume is present in an 105 

image) was 90% when testing plumes with emission rates above 100 kg hr-1, however, the accuracy dropped to 50% for 106 

emission rates around 50-60 kg hr-1. The spatial and spectral resolution of the aircraft data used in this study (AVIRIS-NG) 107 

has far higher spatial and spectral resolution than PRISMA, thus making methane detection prone to lower errors. However, 108 

PRISMA data is publicly available and covers a far larger spatial range with regular repeat measurements, thus making it a 109 

superior resource for rapid detection of methane point source emissions across many regions on earth. Thus, a deep neural 110 

network that is capable of utilising PRISMA data to detect methane emissions could be very effective in our efforts to mitigate 111 

future climate change. 112 

 113 

In this study, we produced pseudo-observations of simulated synthetic methane plumes generated with the Large Eddy 114 

Simulation extension of the Weather Research and Forecasting model (WRF-LES). These simulated plumes were then 115 

embedded into an array of PRISMA images and used as training data for a novel neural network architecture that aimed to 116 

produce masks of the locations of methane plumes and estimate their emission rates from PRISMA satellite imagery. The 117 

effectiveness of this model was then tested on images of real-world plumes. The techniques utilised here can be adapted to 118 

locate and quantify emission rates using any satellite imagery with suitable shortwave-infrared bands, or applied to detecting 119 

other greenhouse gases, such as carbon dioxide (CO2). 120 
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2 Methods 121 

2.1 Simulating methane plumes with WRF-LES 122 

The Weather Research and Forecasting (WRF) model system has comprehensive and multiple capabilities for studying 123 

atmospheric phenomena from global down to large eddy scales. The default large eddy simulation case (LES) of the WRF 124 

V4.2.2 was used and modified to simulate methane plumes for a single point source with a releasing rate of 1000 kg hr-1. The 125 

default LES case does not consider clouds, radiation, or topography, but includes surface physics and 1.5-order TKE 126 

(Turbulent Kinetic Energy) prediction scheme (WRF model User’s Guide: https://www2.mmm.ucar.edu/wrf/users/). A 127 

constant thermal flux of 100 W m-2 was applied at the surface to drive the turbulence. Two nested domains with one-way 128 

nesting were deployed in the simulations. The outer domain had a size of 5.4 km x 6.3 km with 90 m horizontal resolution 129 

and periodic boundary conditions. The inner domain had a size of 3.6 km x 4.5 km with 30 m horizontal grid spacing and 30 130 

m vertical resolution, and flow-dependent boundary conditions for scalars. The plume was only released in the inner domain 131 

after a 3-hour spin-up run. The total running time is 5 hours, and the final 2-hour run was considered for the training, test, 132 

and validation data.  133 

 134 

We designed 15 scenarios consisting of 5 different southerly wind speeds ranging from 1 m s-1 to 9 m s-1, each of which was 135 

uniformly applied from the surface to the model top, and 3 different patterns of potential temperature vertical profiles (Figure 136 

S1). The potential temperature in the scenarios is specified as 290 K from the surface to one of the 3 different mixing depths 137 

of 500 m, 800 m, and 1100 m (Figure S2). Above the mixing depth, there is an inversion layer of 700 m with a vertical 138 

gradient of potential temperature of 0.009 K m-1 applied from the top of the mixing layer to the model top. For each simulation, 139 

the CH4 distribution is saved once every minute and thus there are 120 different scenes for a two hour simulation. Altogether 140 

there are 1800 scenes for the 15 simulations in the data, where the plume was integrated over vertical columns. Figure 1 141 

shows one snapshot of a plume with initial conditions of 3 m s-1 southerly wind and 800 m mixing depth 30 minutes after 142 

release. 143 
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 144 
Figure 1: Snapshot of a simulated plume 30 minutes after release for initial conditions of 3 m s-1 southerly wind and 800 m mixing 145 
depths. Red arrows indicate wind direction at the moment of the snapshot. 146 

2.2 Satellite data retrieval 147 

Methane absorbs solar radiation at a set of shortwave-infrared wavelengths that are well known and documented in 148 

spectroscopic databases.  The absorption of light by methane in the atmosphere therefore alters the reflected sunlight measured 149 

by the satellite in a very predictable way that allows us to quantify the amount of methane along the light path. Here we use 150 

a data-driven retrieval algorithm to estimate the methane enhancements from reflected sunlight using statistical methods based 151 

on the work by Thorpe et al. (2014). This type of simple and fast retrieval method is commonly used for instruments with 152 

comparably low spectral resolutions, for which a more sophisticated, so-called full-physics approach provides no extra 153 

benefit. 154 

  155 

The relationship between the spectral intensity at each point in the satellite spectra and the column enhancement of methane 156 

in the scene is represented by a methane Jacobian vector, which describes the change in the logarithm of the intensity Ik in 157 

band k with respect to the   column enhancement of methane CCH4. The spectral variation of the background of the scene (i.e. 158 

outside of the plume) is approximated by a number of Principal Components of all measured spectra combined derived using 159 
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the Principal Component Analysis (PCA) method. We perform the PCA on the logarithm of measured spectra of the scene 160 

and select the singular vectors (principal components) that best describe the spectral variability of the scene. The optimal 161 

number of singular vectors was determined by trial and error, and was found to be the first three. We then concatenate these 162 

vectors with the methane Jacobian to construct the matrix J with dimension 4x number of PRISMA bands, which we use 163 

along with the logarithm of the measured radiances, y, to find a vector W that minimises the cost function in a linear least 164 

squares fit for each pixel: 165 

‖𝑦 − 𝐽𝑊‖! ,            (1) 166 

 167 

The modelled radiance F is calculated from J and W as follows: 168 

𝐹 = 𝐽𝑊 ,            (2) 169 

 170 

We can then rewrite Eq. (2) as the sum of the background (k) and CH4 (c+1) components of the radiance: 171 

𝐹(𝑊, 𝐽) = 	∑ 	𝐽"#
"$% ⋅ 𝑊" + 𝐽#&% ⋅ 𝑊#&% ,         (3) 172 

 173 

where c is the number of singular vectors used. Thus, the modelled logarithmic radiance F(W, J) is a linear combination of 174 

the singular vectors, Jk, the CH4 Jacobian, Jc+1, and their weights, Wk and  Wc+1, respectively. This method is described in 175 

more detail in Thorpe et al. (2014). Since the wavelengths scale for each across-track pixel of a PRISMA image are different, 176 

it is necessary to infer the Principal Components for each column in the across-track direction separately. 177 

2.3 Training data generation 178 

We generated synthetic datasets to train the machine-learning model by combining PRISMA images with the synthetic plumes 179 

simulated with WRF-LES (described in section 2.1). We use the SWIR spectral radiance from PRISMA Level-1b data as 180 

well as the RGB bands. These datasets come with pixel quality and cloud mask information, which we apply in our data 181 

preparation process. We selected 36 different PRISMA background images to cover a wide range of scenes representative of 182 

places where methane plumes might be expected (Table S1). These images also cover a range of different dates throughout 183 

the ~3 years of PRISMA data available in the archive, to account for different illumination conditions. All the selected scenes 184 

have less than 1% cloud cover, and any pixels flagged as cloudy in the PRISMA product were excluded from the analysis. 185 

 186 

A total of 9700 image tiles were generated for training, each tile with a size of 256 x 256 pixels. The tile size was deliberately 187 

selected as a power of two to optimise the model performance. Each tile was selected at random from one of the 36 188 

1000x1000-pixel PRISMA background scenes, and a synthetic methane plume subsequently embedded in it. The synthetic 189 

plume was also selected randomly from the WRF-LES simulations, with the following parameters also randomised following 190 

a uniform distribution: 191 
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 192 

- Time step: between 1 and 120 seconds (Figure S3). 193 

- Plume origin: any point within the background scene tile, excluding the areas near the edges to avoid missing parts 194 

of the plume. 195 

- Emission rate: all simulated plumes have a 1000 kg hr-1 emission rate, so we applied a scaling factor between 0.1 196 

and 10 to have a range of emissions between 100 and 10,000 kg hr-1 (Figure S4). 197 

The synthetic plumes from WRF-LES are first converted into maps of methane vertical column densities in molecules cm-2. 198 

The original plume simulations are all carried out for an emission of 1000 kg hr-1 and the scenarios for different emission 199 

rates are obtained by scaling the simulated concentrations. Each plume is inserted into the background PRISMA image tile 200 

by modifying the PRISMA SWIR radiances according to the Beer-Lambert law for absorption. Methane columns are 201 

converted into optical depth for each band using a representative methane absorption cross-section for each band computed 202 

from the HITRAN database (Gordon et al., 2022) for a temperature of 293K and pressure of 1 atmosphere. Each of the 9700 203 

training datasets contain: 38 PRISMA radiance bands (3 RGB, and 35 SWIR (2100 - 2365 nm) channels) and the synthetic 204 

plume (i.e., the “true” methane enhancements to be used as labels in the model). 205 

2.4 Training data processing 206 

Each PRISMA sub-image (256 x 256-pixel tile) was normalised by subtracting the mean and dividing by the standard 207 

deviation (std) of the whole collection of training images such that the mean of all the images was 0 and the std was 1 for 208 

each band. This data normalisation step is standard when using deep neural networks as it is understood to optimise the 209 

training time. Following on from this, the undefined (NaN) values present in the images were changed to equal the mean 210 

value of each band in the respective image. These NaN values correspond to either invalid (e.g., saturated) or cloudy pixels. 211 

 212 

Every time an image was retrieved during the training process, data augmentations were randomly applied. The augmentations 213 

were as follows: rotation by a multiple of 90˚, and horizontal and vertical flipping. No brightness and contrast augmentations 214 

were made because the quantification of methane plumes relies on the specific band information inside the plume region. The 215 

purpose of data augmentation was to increase the data volume, to reduce overfitting, and improve the ability of the model to 216 

produce accurate results with data that is different to the training data. 217 

 218 

To predict the methane concentration, it was first necessary to model the methane plume mask (binary classification of 219 

plume/non-plume) because the vast majority of pixels in the training images did not contain a plume (zero-inflated data). An 220 

initial methane concentration threshold of 8×1018 molecules cm-2 was chosen as it was the cut-off point where the plumes 221 

were no longer visible. Furthermore, training the model with a lower threshold resulted in non-convergence. After the model 222 

was trained at the 8×1018 molecules cm-2 threshold, it was possible to continue training the model at a lower threshold. Thus, 223 
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we tested training the model at 5×1017 molecules cm-2 increments until the validation loss dropped substantially. The lowest 224 

threshold where this was the case was 4×1018 molecules cm-2. This final step is important because it increases the range for 225 

which the model can locate and quantify methane emissions. 226 

2.5 Deep neural network architecture and training process 227 

The training of the neural network was split into 4 steps. First, the model was trained to locate the regions of the image 228 

containing a plume via binary semantic segmentation. Next, the column enhancements of methane were predicted inside the 229 

region of the estimated plume mask from the first stage. Following on from this, the emission rate of the plume in the image 230 

was estimated. To ensure that the emission rate estimates would equal zero when no plume was present, an intermediate 231 

prediction layer was included where a binary classification was made regarding whether a plume was present in the image or 232 

not. At each stage of the model, the input was a concatenation of the input satellite image and all the previous outputs (Figure 233 

2). To optimise the training of the model weights, each portion of the model was trained alone such that the weights in all the 234 

other parts were not being updated. The parts of the model were trained in order moving downwards across the models 235 

depicted in Figure 2. The loss function to predict the plume mask was as follows: 236 

Lossmask = 1	 + 	𝐵𝐶 − 	𝑆𝐷𝐶 ,          (4) 237 

 238 

Where BC is binary cross entropy, SDC is the Sørensen-dice coefficient defined as follows: 239 

𝑆𝐷𝐶 = !'(
!'(	&	*(	&	*+

,           (5) 240 

 241 

where TP is true positive, FN is false negative, and FP is false positive. This loss function was chosen because of the large 242 

number of non-plume pixels present in the image. The loss function for the mask concentration was mean squared error 243 

(MSE), a standard choice for regression modelling. For the binary classification part of the model, binary cross-entropy was 244 

chosen, which is common for solving 1-dimensional binary problems. Finally, for the emission rate part of the model, MSE 245 

was chosen as the loss function until the validation error started to plateau, after which, the model was only trained on images 246 

containing plumes and mean absolute percentage error was given as the loss function. This was done to ensure that the 247 

proportion error was minimised rather than the absolute error. Mean absolute percentage error was not used throughout the 248 

whole training process because it was important that the model was trained on some images with no plumes (so an emission 249 

rate of zero could be possible) and mean absolute percentage error produced very high loss values when false positives were 250 

made by the model. 251 

  252 

The two encoder CNNs have identical architectures except the activation function at the end of the binary classification model 253 

has sigmoid activation because the predictions are constrained between 0 and 1, and the emission rate estimator has a ReLU 254 

activation function. 255 
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 256 
Figure 2: Structure of the neural networks used in this study. Green boxes indicate portions of the neural network, orange boxes 257 
indicate predictions made by each stage of the neural network. Black lines indicate flow of data into models, and red lines indicate 258 
predictions resulting from a model. 259 

2.5.1 Estimating plume masks 260 

Estimating the mask of a methane plume involved using a similar architecture to a UNet model (Ronneberger et al., 2015) 261 

(Figure 3). UNet models consist of two paths; the first is the encoder, which captures the context in the image and is composed 262 

of convolutional and max pooling layers. The second path is the decoder, which enables localisation of the features captured 263 

by the encoder and consists of convolutional and upsampling layers (Ronneberger et al., 2015). In our model architecture, 264 

there is an additional 1×1 convolutional layer with 64 filters at the beginning because methane plumes are associated with 265 

anomalies in certain SWIR bands of the PRISMA imagery. Methane is not absorbed in the visible bands; thus, their inclusion 266 

helps the neural network to distinguish between plume and non-plume by providing information on the background of the 267 

image. Methane plumes can be identified based on the typical spatial structures that form as a result of turbulence and 268 

advection in the atmosphere, as well as the variations in methane-absorbing bands compared with the background landscape. 269 

It is the latter reason why an additional 1×1 convolutional layer was deemed to be helpful in improving the accuracy of the 270 

model. 271 

 272 
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 273 
Figure 3: Architecture of the deep neural network for the UNet portion of the model. 1 × 1 conv, 64 refers to a convolutional filter 274 
with kernel size 1 × 1 and 64 filters. Batch Norm refers to a batch normalisation layer, Concat refers to a concatenation between 275 
the inputs to that layer, 2 x 2 Max pool refers to a max pooling layer with pool size 2, and 2 x 2 up sample refers to upsampling 276 
layer with size 2. ReLU and sigmoid refer to the Rectified Linear Unit and sigmoid activation functions respectively. 277 

2.5.2 Estimating methane column enhancements inside plumes 278 

Estimating the methane column enhancement within the plumes predicted in section 2.4.1 uses a concatenation of the input 279 

image and the mask predictions. This step to aid the estimation of methane concentrations is necessary because the vast 280 

majority of pixels do not contain a plume (a zero-inflated regression problem). Such problems often have the issue that the 281 

model will converge at predicting zeros everywhere. Thus, the inclusion of the mask prediction helps to prevent this. The 282 

ensuing model is composed initially of a 1×1 convolutional layer for a similar reason as its inclusion in the UNet model (see 283 

section 2.4.1). Following on from this are 2 ResNet layers (He et al., 2016), which are characterised by double-layer skip 284 

connections, ReLU activation functions, and batch normalisation (Figure 4). A ResNet architecture was selected for this 285 

portion of the model as it is known to be lightweight and powerful at regression predictions in computer vision. 286 

 287 
Figure 4: Architecture of the deep neural network for the ResNet portion of the model. 1 × 1 conv, 64 refers to a convolutional filter 288 
with kernel size 1 × 1 and 64 filters. Batch Norm refers to a batch normalisation layer and Concat refers to a concatenation between 289 
the inputs to that layer. ReLU refers to the Rectified Linear Unit activation function. 290 
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2.5.3 Estimating emission rate of plumes 291 

The prediction of the binary classification of plume/not plume involved an architecture identical to the one presented in this 292 

section (except the final activation layer was sigmoid, not ReLU). The inputs to the emission rate portion of the model are 293 

the outputs from all the previous stages of the model concatenated with the input image. This is to ensure that more 294 

information is available to the model to accurately estimate emission rates. Following on from this is the 1×1 convolutional 295 

layer, which was included for the same reason as in the previous stages of the model (see section 2.4.1). This is followed by 296 

the decoder part of the model, in which a convolutional layer is followed by batch normalisation, ReLU activation, and max 297 

pooling, which is done 7 times with increasing filters every 2nd loop. These layers encode features about the methane plumes 298 

and reduce the dimensionality of the tensors. Finally, there is a dense layer and ReLU activation to collect all information 299 

obtained and output a single floating-point number as the predicted emission rate (Figure 5). 300 

 301 
Figure 5: Architecture of the deep neural network for the emission rate prediction of the model. 1 × 1 conv, 64 refers to a 302 
convolutional filter with kernel size 1 × 1 and 64 filters. Batch Norm refers to a batch normalisation layer, Concat refers to a 303 
concatenation between the inputs to that layer, and 2 x 2 Max pool refers to a max pooling layer with pool size 2. ReLU refers to 304 
the Rectified Linear Unit activation function. 305 

3 Results 306 

3.1 Application of neural network to simulated plumes 307 

The total training/validation dataset consisted of 9700 images, 80% of which were reserved for training and the remaining 308 

20% for validation. After each iteration of the model through the training dataset (known as an epoch), the model was tested 309 

on the validation dataset. If the loss of the model when tested on the validation dataset was lower than the lowest loss 310 
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previously recorded, the weights of the model were updated. Thus, at the end of the training procedure, the best model was 311 

saved. Each of the stages of the model depicted in Figure 2 were trained separately in descending order, where the weights of 312 

the other stages did not vary. This was done so that the most accurate predictions were being produced from the earlier layers 313 

so that no errors from insufficient training would propagate through the model because the outputs are concatenated with the 314 

satellite data in later parts of the model. 315 

 316 

Once training was complete, the model was tested on an additional 2000 images not seen during training sampled randomly 317 

from a uniform distribution of emission rates from 500 to 10 000 kg hr-1. 36/2000 of the images had a maximum methane 318 

concentration under the 4×1018 molecules cm-2 threshold imposed during training, however they were still included in the 319 

testing to determine if they can still be detected by the model. The model is able to accurately locate and identify the shape 320 

of methane plumes in the test dataset (Figure 6). 321 

  322 
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 323 

 324 

 325 

 326 

 327 
Figure 6: Example images and predictions taken from the test dataset. Images are 3840x3840m composed of 128x128-pixel tiles. 328 
True emission rates and initial wind speeds are (a) 8068 kg hr-1 , 1 ms-1, (b) 1484 kg hr-1 , 1 ms-1, (c) 7673 kg hr-1 , 5 ms-1, (d) 6270 329 
kg hr-1 , 4 ms-1. Retrieved methane comes from the retrieval described in section 2.2. RGB image courtesy of PRISMA © (Italian 330 
Space Agency). 331 

The total methane column enhancement in the images was well estimated, where total estimated methane was closely 332 

correlated with the ground truth (Figure 7) with a tendency to slightly overestimate column values. 333 
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Figure 7: Scatter Plot of mean methane concentration predicted vs true. 334 
 335 
In the binary classification part of the model, we assess its success using the F1-score, precision and recall, which are defined 336 

as follows: 337 

F1 = TP/(TP+0.5*(FP+FN)),          (6) 338 

Precision = TP/(TP+FN),           (7) 339 

Recall = TP/(TP+FP),           (8) 340 

 341 

In the binary classification part of the model, the F1-score, precision, and recall were 0.95, 0.96 and 0.92, respectively (Table 342 

1). These statistics come from predictions made on the 2000 images with plumes in, as well as an additional 1533 images 343 

with no plumes. 344 

 345 
Table 1: Confusion matrix of binary classification portion of the model broken down per image. 346 

 Plume present No plume present 

Predicted plume 1846 51 

Predicted no plume 154 1482 

 

Slope = 1.2 
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The distributions of the scene noise and methane concentrations in the cases where no plume was predicted but a plume was 347 

present (false negative) reveal slightly lower than average scene noise and much lower than average maximum methane 348 

concentration (Table S2). However, in the cases where a plume was predicted but no plume was present (false positive), scene 349 

noise is not noticeably different (Table S2). 350 

 351 

The actual vs predicted emission rate has a slope of 0.83 with a relatively small spread about the line of best fit (std = 1447 352 

kg hr-1). This means that there is a tendency for underestimating emissions with a mean absolute percentage error in emission 353 

rate of 23.7% (Figure 8). This bias in the slope is possibly a result of training the model on images without plumes as well as 354 

those containing plumes. 355 

 356 
Figure 8: Actual vs predicted emission rate using the deep learning model. Line of best fit calculated using Huber loss so outliers 357 
do not have an inordinate influence on the slope. 358 

The absolute emission rate error increased in magnitude as the emission rate increased (Figure 8), as one might expect. The 359 

percentage error was largest in magnitude for the smallest emission rates (500-999 kg hr-1), but the distribution remained 360 

relatively consistent above 2000 kg hr-1, with a median error of 25% and interquartile range of 40% error (Figure 9). The error 361 

in percentage emission rate had a positive bias for emission rates under 1000 kg hr-1 and a negative bias for emission rates 362 

over 2000 kg hr-1 (Figure 9). 363 

  

Slope=0.83 
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 364 

 365 
Figure 9: Error in emission rate predictions from the deep learning model as a function of true emission rate. Positive values 366 
indicate predicted emission rates being larger than true emission rates. Top panel shows absolute emission rate error and bottom 367 
panel shows percentage emission rate error. 368 

3.2 Application to real-world images 369 

3.2 Application to real-world images 370 

The model was then tested on 40 PRISMA scenes obtained during 2020-2022 in the Korpeje oil field, Turkmenistan (37.9˚N, 371 

53.2˚E - 39.4˚N, 55.2˚E), a well-studied area with frequent methane point source emissions plumes (Irakulis-Loitxate et al., 372 

2022). The images were normalised in the same way that the training, test, and validation images were. 21 plumes were 373 

identified from 15 different scenes with predicted emission rates ranging from 1112-7615 kg hr-1 (Figure 10; Table S3).  374 
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  375 
Figure 10: Images of plumes detected by the neural network in the Korpeje oil field, Turkmenistan. Left panels depict methane 376 
retrievals, middle panels depict the RGB of the image, and the right panel depicts the mask prediction by the neural network. The 377 
predicted emission rates are (top) 7615 and (bottom) 2370 kg hr-1. RGB image courtesy of PRISMA © (Italian Space Agency). 378 

  379 

Methane plume detection capability using the neural network was compared with using clustering and thresholding techniques 380 

(see section 2.2). Out of the 21 plumes, 14 were found using this approach. The neural network model took roughly 1 minute 381 

to make predictions of plume masks, methane concentrations, and emission rates of located plumes in an image of 1000x1000 382 

pixels (900km2 area) without the need for time-consuming human inspection typically needed for classical clustering 383 

approaches. 384 

4 Discussion 385 

Identification and reduction of methane emissions can have a considerable influence over the Earth’s surface radiation budget 386 

and hence our efforts to mitigate climate change. Methods utilising classical approaches have had some success in detecting 387 

fossil fuel methane point sources and estimating their emissions, but the errors are high (roughly 50% error for emission rate 388 

predictions) if no accurate local wind speed information is available and often time-consuming human judgement is necessary 389 

to separate plumes from surface effects. Within the pseudo-observation dataset produced in this study, only one quarter of 390 

the images were deemed suitable to be analysed via clustering algorithms, which demonstrates its limitation for detecting 391 

methane point source emissions. In comparison, only 7.7% of the pseudo-observations were undetected by the neural network 392 

(Table 1). The neural network presented in this study was able to accurately locate simulated methane point source plumes 393 
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with a precision and recall of 0.96 and 0.92, respectively. The estimates of emission rate did not require wind speed 394 

information, which is a major source for uncertainty in emission estimates in conventional approaches such as the IME 395 

method, and had an average error of 23.7%, which is considerably lower than that obtained from classical methods. The 396 

emission rate prediction error could possibly be further reduced with training on a larger dataset. 397 

 398 

The approach used in this study differs from the approach by Jongaramrungruang et al. (2022), who directly predicted the 399 

emission rate from the satellite data without first estimating the plume mask. However, we found that excluding these stages 400 

dramatically worsened the model prediction, where the error in emission rate was greater than 50%. The model architecture 401 

presented here utilises the maximum amount of information available from the training data. Possible explanations for why 402 

the model from Jongaramrungruang et al. (2022) was nevertheless successful could include the large training data volume 403 

available in their study (in the order of hundreds of thousands of images), which is an order of magnitude larger than that 404 

available in this study. This larger training volume may have enabled the neural network to make the link between plume 405 

shapes and emission rates. In addition, the spectral and spatial resolution of the aircraft imagery used in their study (AVIRIS-406 

NG) is substantially higher than that of PRISMA. Finally, the input bands for this study totalled 38, whereas in the study of 407 

(Jongaramrungruang et al., 2022), only 1 band was sufficient due to the low noise in the signal in the AVIRIS-NG data and 408 

high methane absorption in that band. Thus, it may have been easier for their neural network to learn features in the image 409 

due to lower noise present. 410 

 411 

When producing the training data labels for plume masks, a constant threshold was chosen for what methane concentration 412 

constitutes a plume. However, the minimum methane concentration that is detectable likely varies depending on scene noise 413 

and brightness. Thus, more work is necessary to quantify the most appropriate threshold. However, precise estimates of the 414 

edges of a plume are of lesser importance than the initial identification of a plume and its corresponding emission rate. 415 

 416 

There is a noticeable bias present in the emission rate prediction errors (Figure 8; Figure 9) which was also evident in the 417 

study by Jongaramrungruang et al. (2022). This bias should be rectified, and future work is needed in fine tuning the neural 418 

network training procedure to do so. Such adjustments could include modifying the emission rate loss function or the model 419 

architecture. The model was trained only on images with a single methane point source; thus, the model is not able to 420 

discriminate between emissions from different sources within a single 128x128-pixel image. The solution to this would be to 421 

add in training data with multiple sources and solve the instance segmentation problem using an appropriate architecture, 422 

such as Mask-RCNN (He et al., 2020). It is likely that the errors would be larger in general when using this approach owing 423 

to the increased noise present. 424 
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5 Conclusions 425 

In this study, we present a novel deep neural network model for identifying and quantifying methane point source emissions 426 

from PRISMA satellite data. PRISMA data has sufficient spectral and spatial resolution to identify methane plumes, while 427 

still having considerable spatial coverage and is still in operation today. These factors make PRISMA an ideal tool for methane 428 

detection and the deep neural network developed here has great potential to impact climate mitigation efforts. The model 429 

proved to be more successful with both identification and quantification than previous efforts using classical approaches. 430 

Rapid identification and quantification of methane point sources is a vital contribution to climate change mitigation, and the 431 

approach outlined here opens the door to the capability to automate methane plume detection. Our model was able to produce 432 

predictions on an area of 900 km2 over real PRISMA images in less than a minute. Such a capability would vastly reduce the 433 

time and costs associated with reducing anthropogenic methane emissions. 434 
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